
Journal of Sound and <ibration (2000) 238(1), 113}145
doi:10.1006/jsvi.2000.3152, available online at http://www.idealibrary.com on
HAMILTON’S PRINCIPLE FOR EXTERNAL VISCOUS
FLUID}STRUCTURE INTERACTION

H. BENAROYA AND T. WEI

Department of Mechanical and Aerospace Engineering, Rutgers ;niversity, 98 Brett Road, Piscataway,
NJ 08854, ;.S.A.

(Received 8 November 1999, and in ,nal form 8 June 2000)

Hamilton's principle is extended so as to be able to model external #ow}structure
interaction. This is accomplished by using Reynold's Transport theorem. In this form,
Hamilton's principle is hybrid in the sense that it has an analytical part as well as a part that
depends on experimentally derived functions. Examples are presented. The discussion on
implications and extensions is extensive. In this work, a general theory is developed for the
case where the con"guration is not prescribed at the end times of the variational principle.
This leads to a single governing equation of motion. This limitation can be removed by
prescribing the end times, as usually done. This is outlined in the present paper, and will be
the subject of a future paper.

A detailed discussion is also presented of the experimental work performed in parallel
with and in support of the theoretical developments. As a true #uid-structural model, it is
necessary to fully couple the dynamics. This has been the foundation of our formulation.
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1. INTRODUCTION

One of the great challenges in engineering science also happens to be one of engineering
design. This is the modelling, analysis and design of vibrating structures driven by #uid
motion. Our particular concern here is the vortex-induced oscillations of a blu! body.
While the importance of the subject has long been known, it is only during the past almost
30 years that there have been concerted e!orts to analytically model the general behavior of
the coupling between vortex shedding and structural oscillation. One may view the e!orts
of Hartlen and Currie [1] as initiating the #ow-oscillator phase of modern research in this
discipline.

In parallel, and over a longer period of time, experimentalists have been performing
experiments and gathering data of such interactions in order to help de"ne the various
regimes of behavior as a function, for example, of #ow velocity. There are numerous
review papers [2}7] and journals devoted to this subject. The literature in #uid}structure
interaction is vast, and it can be said to comprise a large fraction of all papers published in
the mechanical sciences. Some representative papers are listed [8}31] to provide the reader
with a sample of the various studies. The above-listed review papers would be an excellent
starting point for the interested worker.

In this paper we are studying an approach that has been only barely noticed and for
which the literature is essentially non-existent except for the initial work referred to next.

Hamilton's principle in analytical dynamics is certainly among the great intellectual
achievements since the work of Newton. This variational principle, while developed as part
of the evolution of our understanding of elastic body dynamics, has been applied in many
0022-460X/00/460113#33 $35.00/0 ( 2000 Academic Press
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disciplines, including optics and quantum mechanics. In section 2, for completeness and to
establish the notation used here, we will derive the principle, and then in section 3 show how
it has been extended in the fundamental work of McIver [32] for systems of changing mass.
In particular, the development by McIver was a successful attempt to model structures with
internal moving #uid. We will build on this idea to extend Hamilton's principle for
structures vibrating in a #uid. Our purpose, in addition to being fascinated by the
variational principles of mechanics, is to use such an approach to semi-analytically model
vortex-induced vibration. The &&semi'' implies that part of the model depends on
experimental data. As we will show, there is no way that such a modelling e!ort can be
accomplished without a close linkage to data derived in physical experiments and the input
of the experimentalist. Experimental data not only helps us to verify the model predictions
but also allows us to develop the most advantageous model framework from the variational
mechanics perspective, as we will discuss in section 4.

The basic theory of section 4 is applied to simple examples in section 5. This leads to
sections 6 and 7 where the experimental foundations of the concurrent e!ort are introduced
and detailed for the reader. Experimental results are presented and discussed for one of the
simple examples of section 5. Section 8 introduces an extension of the theory for more
general formulations.

2. HAMILTON'S PRINCIPLE

2.1. THE CLASSICAL THEORY

From d'Alembert's principle for a system of n particles,
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where ¹ is called the kinetic energy of the particles. On substituting equations (2), (3) and (5)
into equation (1), d'Alembert's principle becomes
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iD"0, (6)

where L"¹!P is known as the Lagrangian of the system. Equation (6) for a discrete
system may be written for a continuous system as

dL#d=!

d

dt CP
v

(oU) ) dr dvD"0, (7)

where o denotes the density, U"dr/dt, the velocity "eld of the system at time t, L is the
Lagrangian of the continuous system, and d= is the virtual work performed on the system
by the generalized (non-conservative) forces undergoing virtual displacements. v denotes
a "xed material system enclosed in a volume, over which the integration is performed.

Hamilton's principle is obtained by integrating equation (7) (or equation (6)) with respect
to time over an interval t
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, yielding
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If one imposes the requirement that at times t
1

and t
2

the con"guration be prescribed,
then it must be that dr"0, and then the last term in the above equation drops out, leaving
only
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The equations of motion and their respective boundary conditions are a result of
performing the stated variations.

In this case, where the con"guration is prescribed at the end times, Hamilton's principle
states that there is an optimal (minimum) path in time for the con"guration of the
system. This is not generally the case where the end times are not prescribed, as we will
see in our subsequent discussion. It is important to emphasize the physical meaning of
prescribing the con"guration and how this leads to a variational principle to which there
is an optimal con"guration in dynamic space. Prescribing the variation dr at the end
times implies that the system con"guration is known at those times, thus leading to dr"0,
and then it is therefore possible to meaningfully speak of an optimal path between the end
times.

2.2. A GENERALIZATION

If we cannot state that the variation is between de"nite limits t
1

and t
2
, then there may be

a variation as well at the ends of the time interval. The implication is that the system is not
prescribed at these end times. Equation (9) was obtained assuming no such variation. Begin
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with equation (6) and integrate between t
1

and t
2
. Then,
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Following Lanczos [33], let the virtual displacement dr
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In equation (11), the right-hand side represents the non-conservative work done on the
system and the left-hand side represents the total energy in the system. We know that
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If there is no non-conservative work done on the system, then [=]t2
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"0, and we have

¹#P"constant, which is a statement of the principle of conservation of energy. In
general, however, D (¹#P)"D=. Divide both sides by Dt and take the limit as DtP 0,
then over the time span t
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that is, the total change in system energy is equal to the rate at which (non-conservative)
work is done on the system. These developments can be extended to an open system, as
shown in the following section, where we summarize some of the key results due to McIver.

3. MCIVER'S EXTENSION OF HAMILTON'S PRINCIPLE

In 1973, McIver published a work with broad implications for modelling complex
#uid}structure interactions. The central feature of his work was the broadening of
Hamilton's principle to include integral control volume concepts from #uid mechanics. In
this section, we summarize the key developments by McIver; however, adopting a notation
that is consistent with our own developments that begin in section 4.

3.1. A BRIEF REVIEW OF REYNOLDS TRANSPORT THEOREM

Before proceeding with a discussion of McIver's extension, it would perhaps be
instructive to brie#y review Reynolds transport theorem. We "rst de"ne a system as
a collection of #uid particles comprising part of a #ow of interest. The system boundaries
are such that the same #uid elements are always contained therein. Necessarily, the mass of
a system is constant, and it is in principle possible to write equations of motion for the
system. For many #ows, however, such a formulation would be intractable or inconvenient
at best. For this reason, we de"ne a control volume as a clearly de"ned, albeit imaginary,
space through which #uid may pass. The external boundary of the control volume is
referred to as the control surface. The advantage of this approach is that the boundaries of
the control volume are prescribed at all times. Typically, one dictates that the control
volume coincide with some physically meaningful boundary in the #ow, e.g., the internal
passage ways of a jet aircraft engine. In this context, it may be expedient to allow the control
volume to move or change shape depending on the #ow of interest.

Now suppose that at some time, t
0
, a collection of #uid particles comprising a system

occupies the same space as a control volume. It is possible to write the rate of change of any
property of that system in terms of control volume parameters. This is the classic Reynolds
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transport theorem which may be written as
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In this form, A represents the property of interest per unit mass (intensive property), o is
the #uid density, dv and ds are di!erential volumes and control surface area elements,
respectively, and U"U (x, t) is the #uid velocity at any point on the control surface. Since
o(U ) n) is the mass #ow rate of #uid across a di!erential area element of the control surface,
equation (13) may be physically interpreted as a balance equation for the property A.
Speci"cally, the rate of change of A contained within the system (i.e., the left-hand side of
equation (13)) is equal to the rate of change of A within the control volume plus the net #ux
of A across the boundaries of the control volume. The unit normal n is de"ned as positive
when pointing outward from a control surface. Therefore, for a #ow into the control volume
the sign of U ) n is negative and for a #ow out of the control volume the sign of U ) n is
positive. The control surface integral above is given a negative sign so that an increase in the
system property Ao with time occurs with a #ow into the control volume.

Finally, it is important to note that U represents the #uid velocity relative to an inertial
reference frame. Thus, if any part of the control surface is moving relative to such inertial
frame, it becomes necessary to subtract the control surface velocity from the #uid velocity,
U!V

control
, to obtain the #ow rate across the control volume boundaries. All quantities are

de"ned or measured with respect to an observer at a "xed, or inertial control volume.

3.2. MCIVER'S EXTENSION

The strength of McIver's work was in identifying an approach for analyzing complex
interactions where the system boundaries are not necessarily well de"ned or where the
system con"guration at two distinct times may not be readily prescribed. In the classical
Hamilton's principle approach, the system contains one or more solid objects whose
positions may be prescribed at speci"c times. That is, the system is of "xed mass containing
the same material elements at all times. By introducing Reynolds transport theorem,
McIver generalized the analysis to include control volumes where the material is permitted
to cross the boundaries. Speci"cally, by applying Reynolds transport theorem, equation
(13), to the last term in equation (7), we obtain
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where, in the Lagrangian of the open control volume, L
system

, the mass is not "xed. We have
retained the possibility of a moving control surface by including V

control
, which may have

a di!erent value in di!erent regions of the control surface. The control surface here implies
an open region since at closed portions #ow velocity U"V
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. Equation (14) is

a statement of the principle of virtual work.
Now integrating with respect to time over the interval t
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system con,gurations at t
1

and t
2

to be prescribed, the extended form of Hamilton's principle
for a system of changing mass can be expressed as
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sAs before, we replace the arbitrary variation dr by the actual dr5"r5 dt.

where d= is the virtual work performed by the non-potential forces acting on the same
system. If the control surface (CS) does not move, then V

control
"0. If only a portion of the

control surface moves then the integral will be split into parts that follow the moving
control surface and parts that are static. For the case where the virtual work arises from the
surface tractions over the closed and open boundaries of the system, we have
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where r is the general stress tensor. Equation (15) then becomes
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For a system that comprises a structure and a #uid, the above terms must account for
both. Term L

system
includes both structure and #uid, d=

open CS
represents open portions of

the control surface through which #uid #ows, and d=
closed CS

represents boundaries through
which there is no #ow, such as a solid boundary or a streamline.

McIver's system is composed of one control volume, part of which is open and the rest is
closed. Therefore, both are treated simultaneously, as shown in the two examples developed in
his paper. The "rst is the derivation of the equation of motion of a rocket where the open part
of the control surface coincides with the exhaust for combusted fuel. The second example
discusses an early controversy regarding the modelling of the dynamics of a moving beam.

3.3. SYSTEM CONFIGURATION NOT PRESCRIBED AT t
1

AND t
2

If the system con"guration is not prescribed at the end times, we must proceed di!erently
after equation (14). If the system is not prescribed at t

1
and t

2
, the variation of the

displacement drO0, rather, we have the followings relation dr"U dt. From this, we can
see that the variational operator is related to the time di!erential operator by
d( ) )"dtd( ) )/dt. Begin with equation (14), repeated here,
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interchange the partial derivative with the integration over the control volume, and replace
the variation as noted above,
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Eliminate the common dt factor to "nd
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For this system, we have
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where e is the potential energy per unit mass. Now apply Reynolds transport theorem,
equation (13), to L
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Substitute this expression into equation (18) to "nd
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and ¹ represents the kinetic energy of all the #uid within the control volume. Then,
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This equation states that the change in energy of a system equals the rate at which
non-conservative work is done on the system plus the rate of gain of energy by virtue of the
#uid #owing through the control surface and the advancing control surface engul"ng
particles. With the exception of the integral on the right-hand side, this equation is identical
to equation (12).

4. THE EXTENSION FOR EXTERNAL VISCOUS FLOWS

McIver derived his extension for applications where the #uid is encased in the structure.
The equations derived above assume a steady frictionless #ow. The examples he studied
include the rocket, and #ow in a pipe. The application of interest here has the structure
within the #uid. In particular, we are interested in generalizing the McIver extension of
Hamilton's principle so that we can model the vortex-induced oscillation of a structure.
This is a viscous external #uid}structure interaction. McIver's extension utilizes the control
volume concept to account for #uid mass that enters and leaves the structure. This same
idea can be applied to a control volume around a #uid that has a structure internally.

Modelling of the internal #ow problem has the advantage that, assuming no cavitation,
the #uid is bound by the structure. With external #ows, the #uid is unbounded and the
modelling becomes more challenging.

In this development it is useful to think of the system, comprising a structure surrounded
by a moving #uid, as one that is de"ned using two control surfaces. The "rst control surface
is at the structure surface. It is a closed control volume. The second control surface is at
some distance from the structure, as shown in the "gures below. This control surface may be
partially closed and partially open, or all open, depending on the application. It is
important to keep track of the various portions of the control surface so that the parameters
are appropriately prescribed.

For such a control volume,

f there is a time rate change of momentum within the control volume due to the unsteady
character of the #ow,

f there is a net momentum #ux across the boundaries of the control surface,
f there is an instantaneous pressure p acting on the control surface,
f there is an instantaneous shear stress q acting on the control surface.

Begin with equation (14), repeated here,

dL
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#d=!Pcontrol
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L
Lt

(o;) ) dr dv#Pcontrol
surface

(oU) ) dr (U!V
control

) ) n )ds"0.

The integral over the control volume need to be interpreted here to include the inner
(structural) as well as outer (#uid) control volumes.

Replace d= as follows,

d="Pclosed
CS

(r )n) ) dr ds#Popen
CS

(r ) n) ) dr ds, (20)

where n is an outward normal in the positive sense.
The integral over the closed surface represents the virtual work done by shear forces at

the boundaries of the control volume where there is no #ow across the control surface, for
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example, at the cylinder wall, possibly other solid boundaries, or at streamlines. The integral
over the open surface represents the virtual work done by normal and shear forces at the
boundaries of the control volume where there is a #ow across the control surface, for
example, at the upstream and downstream surfaces, which may be perpendicular to the #ow
direction. The integrals above can be written more speci"cally as

Pclosed
CS

(r ) n) ) dr ds"Pclosed
CS

(!pn#q
c
) ) dr ds, (21)

Popen
CS

(r )n) ) dr ds"Popen
CS

(!pn#q
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where !pn is the normal pressure (inward) and s
c
and s

o
are the shear forces on the closed

(structural) and open (#uid) surfaces of the control volume.
There are two ways to proceed. One can prescribe the con"guration or not prescribe the

con"guration at the end times. We begin by not prescribing the con"guration at the end
times.

4.1. CONFIGURATION NOT PRESCRIBED AT t
1

AND t
2

We now follow the procedure of section 3 where the con"guration is not prescribed at
t
1

or t
2
. We de"ne dr as before, with the variational operator related to the time di!erential

operator by d ( ) )"dt d( ) )/dt. Then,
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where it is noted that the work done at the cylinder surface is independent of the control
surface.

The integral over the control volume must be considered in the following way. For the
inner control volume dr"U

structure
dt and for the outer control volume (annulus) dr"Udt,
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we "nd
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We know that the integral over the control volume equals twice the total kinetic energies
of the #uid and the structure 2¹, where ¹"¹

fluid
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. Now apply the control

volume equation (13) to the quantity L
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,
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where the terms under the integral are intensive properties and have units of energy per unit
volume, that is,
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The integral over the open control surface accounts for the #uid entering the control
volume (no incoming structure), and therefore the term 1

2
o;2 represents the -uid kinetic

energy -ux across the control surface. There is also a possible change in potential energy of
the #uid per unit mass e. If there is no cavitation, an approximation can be made that, on
average, for every part of the #uid crossing the control surface with an increase in potential,
there is an equivalent loss in potential in another region of the surface. Of course, if the #ow
as a whole gains or loses potential, this assumption is invalid. Thus, e is not included if the
average #ow is perpendicular to the gravitational vector.
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Substitute this expression into equation (23) to "nd
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and noting that dP
fluid

/dt"0, and simplifying,
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Note that the factor dt in all terms have been eliminated. Also, each term in the equation
represents a time rate of change of a work term. That is,=Q or ¹Q , meaning that these are
expression for power. Equation (27) can be put into the form of equation (19) as follows:
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The questions we address later are (1) the possible and optimal control volume
con"gurations that are suitable for the problems at hand, and (2) whether we can select
a control volume such that the open surfaces are prescribed, thus leading to a variational
principle, rather than equation (28). First, however, we would explore equation (28) in more
detail.

Equation (28) is a scalar equation, and therefore its evaluation and simpli"cation will
result in a single equation of motion for the oscillating structure where all the #uid energy
results in a forcing function on the structure. Such an equation of motion is in the
single-degree-of-freedom class of models for vortex-induced structural oscillations.

The structural terms on the left-hand side of equation (28),

d(¹
structure

!P
structure

)controlvol
dt

,



VISCOUS FLUID-STRUCTURE INTERACTION 125
are found by expressing ¹
structure

#P
structure

in terms of structural displacements and
velocities and then di!erentiating with respect to time. The remaining #uid term is related as
follows:
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where m
fluid

within the (open) control volume is constant. In the above, control vol
respectively refers to either the closed one that hugs the structure, or the open one that is
concentric with the closed one. Because of the matched boundary conditions at the
interface, that is, #uid velocity equals structural velocity, the existence of this term includes
the added mass e!ect that is included when a structure oscillates in a relatively dense
medium. Since this term is evaluated experimentally and fed into the governing equation,
any #uid dynamics that is a result of structural oscillation is implicitly included.

The terms on the right-hand side of equation (28) are the various components of the
kinetic energy #ux across the control surface. Equation (28) is, furthermore, a statement of
the "rst law of thermodynamics where heat transfer and dissipation has been omitted.

In summary, the linking of Hamilton's principle for an unprescribed system with
Reynolds transport theorem results in the "rst law of thermodynamics. A check of the
dimensions of all expressions, including the rectilinear acceleration, shows that all the units
are rate of work, or power, that is, for example, ft lb/s or W, depending on the chosen system
of units.

Equation (28) can be written as
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We envision the following procedure for working with equation (30). We will substitute
expressions for the kinetic energies on the left-hand side. On the right-hand side, we will
have experimentally based analytical expressions for the #ow velocities, pressures and
stresses. This relation will allow the derivation of an expression for the acceleration of the
structure. This will be integrated twice to "nd the expression for the structural displacement
as a function of time and the system parameters. This result will then be compared to the
experimentally derived structural displacement as a function of time. The two functions will
be compared, permitting an evaluation of the analytical framework and its components.

4.1.1. Control volume de,nition

First let us describe the control volume of interest here. Consider a top view of a circular
cylinder with two control surfaces, one at the surface of the cylinder and the other
some concentric distance out in the surrounding water. One question that arises when
considering various possible control volumes is whether a particular control volume has
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signi"cant advantages either for the analytical formulation or for the experimental
procedures, the results of which are required as input to the analytical model. This will have
to be considered as part of an examination of the proposed methodology.

4.2. COUPLED EXPERIMENTS

There is no possibility of analytically arriving at expressions for each term and each
function in equation (30). Therefore, it is necessary that an experimental program is run in
parallel for particular applications. The power of this energy-based approach is two-fold.
One is that an analytical framework is created to organize our understanding of a complex
non-linear and interactive phenomenon. The other which is equally important is that
the experimental program provides us with invaluable information about some of the
components of these equations, and this permits us to utilize the variational tools in the
derivation of the equations of motion.

5. SIMPLE EXAMPLE PROBLEMS

Several example problem formulations are presented next. These are, of course, simple
cases meant to initiate us to the application of the general equation. It is straightforward to
add structural and other damping mechanisms.

5.1. ANNULAR CONTROL VOLUMES MOVING IN TANDEM

Speci"cally, in the case of a two-dimensional idealized oscillation of a rigid cylinder, there
will be one generalized co-ordinate, say x (t). Then, the kinetic energy of the structure is
related to xR 2 and the strain energy in the supporting springs (with net sti!ness constant
equal to k) will be related to x2. The speed of the closed and open control volumes are
xR , since they are de"ned to move with the structure. Similarly, the relative rectilinear
accelerations of the closed and open control volumes are xK . The expressions required to
evaluate the terms (!pn#s

c
) )U, and (!pn#s

o
) )U are determined experimentally. It

has been assumed that the cylinder oscillates in the plane perpendicular to the #ow
direction, and that the acceleration (of the closed control volume) is rectilinear.

For this rigidly translating cylinder, we have
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Equation (30) for this particular example can be written as
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where, in this simpli"ed problem, V
control

"x5 "xR , the last equality is due to the fact that the
structural and outer #uid control volumes are stipulated to travel only in the x direction
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perpendicular to the #ow. The open and closed control surfaces refer to the outer and inner
control surfaces, respectively. The expression m

fluid
;;Q refers to the #uid between the two

concentric control surfaces. P
structure

includes all the potential stored in the structure.
Because the motion of the cylinder is pure translation perpendicular to the gravitational
"eld, we do not see the net force resulting from the di!erence between cylinder weight and
buoyancy force. This net force acts along the axis of the cylinder.

Combining like terms yields
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5.2. STATIONARY OUTER CONTROL VOLUME: TRANSLATING CYLINDER

If the open control surface is stationary, while the inner control surface attached to the
cylinder is still in motion as before, then xR "0 in the integral over the open control surface,
and we have the simpli"ed equation,
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It is important to note that even in a free vibration in an initially still #uid, the #ow
velocity;O0 since any motion of the structure from non-zero initial conditions will result
in a #uid motion. Therefore, the equation of motion does not reduce here to
m

cylinder
xK#kx"0 even though ; (0)"0.

5.3. STATIONARY OUTER CONTROL VOLUME: CYLINDER OSCILLATING ABOUT

CONTACT AT BASE

Here we take the cylinder to be connected only at its base via a leaf spring. It behaves like
a column supported only at its base. For purposes of this example we assume that the
cylinder is rigid, as above, and that three-dimensional e!ects can be ignored. The single
generalized co-ordinate that de"nes the cylinder location is the angle of rotation h rad. We
have an additional term in the potential of the structure due to the di!erence between the
buoyancy force and the weight. We assume that the resultants of these distributed forces act
at the center of geometry of the circular cylinder. Then, for some rotation h, this additional
potential results in the moment (mg!B) (¸/2) sin h, where mg is the weight of the cylinder,
B is the total buoyancy force (which equals the weight of the displaced #uid) and ¸ is the
length of the cylinder. Let I

o
be the mass moment of inertia for the circular cylinder about its

base, k
T

be the torsional spring constant at the base, then the governing equation is
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This equation, as well as the other cases above, can also be evaluated numerically if
written in the form

1

2

d

dt
MI

o
hR 2#k

T
h2#(mg!B )¸ cos hN"F(t), (34)

where F (t) is the sum of all the remaining terms,
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Then, we solve for h by integrating both sides of equation (34), and then integrating again
with respect to time. There are numerical issues to be resolved due to the complexities of the
functions on both sides of the equals sign. A model problem is presented subsequently. We
"rst present a brief discussion on the experimental apparatus used and the kinds of data
that are obtained.

6. BACKGROUND TO EXPERIMENTAL WORK

This section describes the experimental methodology used to acquire key modeling data,
i.e., kinetic energy transport and work by viscous forces across the boundaries of an integral
control volume. There is also a presentation of preliminary data and their application to
a prototype model.

Observe that equation (28) is an integral energy transport equation. The left-hand side
represents the time rate of change of mechanical energy in the control volume. This includes
time derivatives of kinetic and potential energies of the structure, and temporal variations of
the #uid kinetic energy. The rate of change of #uid kinetic energy for a "xed control volume
location, as well as the apparent change in #uid kinetic energy due to motion of the control
volume through a spatially varying #ow "eld, is included.

The right-hand side contains integral terms describing transport of #uid energy across the
boundaries of the control volume. These are the #uid &&forcing'' functions which &&drive'' the
structural motion, written in terms of energy transport. Speci"cally, the "rst term represents
the net #ux of #uid kinetic energy across the boundaries of the control volume. The other
integrals are a mathematical description of the work done on the control volume
boundaries by pressure and viscous forces, that is, the non-conservative surface forces.

6.1. EXPERIMENTAL DATA AS ANALYTICAL MODELLING INPUT

Solutions to equation (28) will be time-dependent expressions for the structure's motion
as functions of both time and position along the structure. Attaining scienti"cally rigorous
solutions, in turn, requires spatially and temporally resolved descriptions of the #uid
&&forcing'' functions on the right-hand side as well as the #uid kinetic energy derivative on
the left. Unfortunately, there is, as yet, no known generalized analytic solution to the #uid
equations which could be integrated to obtain the necessary forcing functions. This tends to
be a universal problem faced by modellers once the governing equations of motion have
been derived.
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When considering how to proceed, one immediately recognizes the risk of making
assumptions without a clear understanding of the #ow}structure interactions over the
entire range of conditions being modelled. No matter how physically reasonable, there is
a signi"cant risk of introducing empiricism into the "nal solution. Without additional
guidance, we would also lack the insight and con"dence to realistically assess the versatility
of the model.

Recent advances in video-based #ow measurement techniques have enabled accurate
measurement of derivative #ow quantities in highly complex, turbulent #ows. In particular,
Shah et al. [34, 35] have used highly resolved digital particle image velocimetry (DPIV)
data to compute terms in the vorticity transport equation, along with turbulent strain rates
in a turbulent tip-vortex shed from a half D-wing. Hsu et al. [36] presented turbulent kinetic
energy transport quantities obtained from DPIV measurements in a turbulent boundary
layer.

In this paper, we look to capitalize on the power of DPIV and apply it to the modelling
problem outlined above. Speci"cally, we show how high-resolution DPIV can be used to
measure #uid energy transport terms and use that information as input to a reduced-order
analytical #uid}structure interaction model. We also use experiments as a validation of
the model output because the structure's position is inherently part of the acquired
experimental data.

It is critical to note at the outset that DPIV is &only' a two-dimensional, velocity "eld
measurement technique. While information about pressure variations and contributions
from three dimensionalities in the #ow are not yet accessible, we demonstrate in this paper
the power of integrating focused experiments with the analytics into a new modelling
paradigm. Discussions of current limitations and possible solutions are included at
appropriate points.

7. THE MODEL PROBLEM

A key objective of the present work is to prove the concept of integrating
detailed experiments with reduced-order analytical modelling. In this context, we chose a
geometrically simple model problem in which the #uid}structure interactions were fully
coupled. That is, #ow excited structural motions that, in turn, modulate the #ow.
Mathematical or experimental complexities, such as strong three dimensionality, were
deferred for future development.

The model problem addressed in this study was the vortex-induced motion of a low
mass-ratio circular cylinder. The cylinder was restrained at its bottom end by a leaf spring
with freedom to move in the cross-stream plane only. A schematic drawing of this model
problem is shown in Figure 1. One can think of it as an inverted pendulum excited by its
own periodic vortex shedding. As will be described in greater detail, the amplitude of
motion of the free, upper end was su$ciently small that the #ow could be considered to be
normally two-dimensional.

The physical model used in this study was a 2)54 cm diameter (D) cylinder constructed of
thin wall aluminium tube. It was 128 cm long and immersed in a uniform #ow of water
&107 cm deep. The mass ratio was 1)53, the damping ratio was 0)054, and the cylinder
natural frequency, f

n
, was 1)25 Hz. For a detailed description of the cylinder and preliminary

observations of the associated #ow dynamics, the reader is referred to Atsavapranee, et al.
[37].

The frequency and amplitude response characteristics of the cylinder are shown in Figure 2.
Measurements were made at the cylinder mid-height, &70 cm above the #oor of the water



Figure 1. Schematic drawing of the oscillating cylinder experiment. Observe that the bottom end was "xed to
the water tunnel #oor by a leaf spring while the top end was free to move.
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tunnel. Open circles and squares indicate cylinder amplitude for di!erent non-dimensional
#ow speeds. The x's denote frequencies of both vortex shedding and cylinder oscillation. At
speeds where frequencies are indicated by x's, the two frequencies were identical. At the low
and high ends of the speed range covered in Figure 2, there was no appreciable cylinder
motion. For these cases, Karman vortex shedding frequencies are indicated by open
diamonds. Also included in the plot is a solid line denoting a Strouhal number of 0)21, the
non-dimensional Karman shedding frequency for a stationary cylinder. There is also
a shorter dashed line indicating a Strouhal number of 0)18.

A salient feature of Figure 2 is the existence of three distinct regimes in the
frequency}amplitude response curves. For a detailed discription and analysis of these
regimes, see Atsavapranee et al. [37]. At the low-speed end, 3";/f

n
D"4, there was a

low-amplitude oscillation of the cylinder with a characteristic beating behavior. This was
referred to as the &&pre-synchronization'' regime. Regime II, between non-dimensional
speeds of 4 and 5)5, was named the &&resonant synchronization'' regime because the vortex
shedding and cylinder motion were so well co-ordinated that the amplitude of motion was
a maximum. The vortex shedding and cylinder oscillation frequencies appeared to have
a Strouhal number of 0)18, as shown in Figure 2. Though signi"cantly diminished, the
beating phenomenon observed in Regime I was still present in Regime II. Sample time
traces of cylinder amplitude at the mid-height of the cylinder for each of the three regimes
being identi"ed are shown in Figure 3.



Figure 2. Frequency amplitude response plot for the inverted pendulum experiment shown in Figure 1. K, L,
Cylinder amplitude for two independent but identical experimental runs; ], cylinder oscillation and vortex
shedding frequency for conditions in which vortex induced vibration occurs; e, vortex shedding frequency for
conditions where the cylinder remains stationary. Regions identi"ed as I, II and III denote the &pre-synchroniza-
tion', &resonant synchronization', and &classic lock-in' regimes.
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The "nal regime, 5)5";/f
n
D"7)5, was the &classic lock-in' regime. In this regime, the

cylinder oscillation frequency and amplitude remained constant over a wide range of #ow
speeds. Flow visualization studies reported in the aforementioned reference indicated that
in the classic lock-in regime, the #ow was modulated by the cylinder motion. That is, the
vortex shedding appeared rather disorganized in comparison to the pre- and resonant
synchronization regimes. We interpret this to mean that the cylinder modulated the #ow so
that &just enough' energy was transferred from #uid to structure to maintain a "xed
amplitude oscillation at the natural frequency.

With this brief overview, we now turn to the experimental methodology issues necessary
to bring about a reduced order analytical solution for this problem. We begin in the next
section with a description of the experimental facilities and techniques. This is followed by
a presentation of DPIV measurements analyzed and presented in a form that is accessible to
the modelers. Then, we present preliminary model results and a discussion of issues yet to be
addressed.

7.1. EXPERIMENTAL APPARATUS AND METHODS

7.1.1. Flow facility

Experiments were conducted in the free surface water tunnel facility at Rutgers
University. Top and side view schematic diagrams of the facility appear in Figure 4.
The closed-circuit tunnel consisted of an upstream settling chamber, two-dimensional
contraction, test section, downstream end tank, pumps, and piping. Note that the pumps
are not shown in Figure 4. Details of the #ow facility may be found in Smith [38] and Grega
et al. [39].



Figure 3. Plots of cylinder position versus time for the three di!erent oscillation regimes identi"ed in Figure 2:
(a) &pre-synchronization', ;/f

n
D"3)8; (b) &resonant synchronization', ;/f

n
D"4)8, and the (c) &classic lock-in',

;/f
n
D"6)1.

132 H. BENAROYA AND T. WEI
The test section measured 58)4 cm in width]122 cm in depth]610 cm in length. It was
constructed entirely from 1)91 cm thick glass panels placed in a welded steel I-beam frame.
Flow was driven by two pumps operating in parallel. Variable speed controllers were used
to set the #ow rate between 760 and 15,000 l/min. With the test section completely "lled, the
maximum #ow rate corresponded to a mean free stream velocity of approximately 30 cm/s.
Free stream turbulence levels were less than 0)1% of the mean free-stream velocity and the
#ow was uniform across the cross-section to within 2%.

7.1.2. <ideo Imaging and Capture

Video images for the DPIV studies were made using a Kodak Megaplus ES1)0 video
camera with 1024]1024 pixel resolution at a framing rate of 30 frames per second. Pairs of
consecutive video frames comprising DPIV video image pairs were captured and stored in
a Pentium computer. The #ow was illuminated using the beam from a Coherent Innova
70-5 5 W argon ion laser which was swept into sheets of light using a galvanometer driven
by a custom laser sweep circuit described brie#y in the following paragraph. A drawing of
the optics set-up is shown in Figure 5.

The primary function of the laser sweep/timing circuit was to generate an input signal to
pivot a small front surface mirror mounted on the shaft of a small galvanometer; when the



Figure 4. (a) Top and (b) side view sketch of the Rutgers free surface water tunnel.

Figure 5. Oblique view drawing of the laser diagnostic system installed in the Rutgers free surface water tunnel.
Note that the video signal is sent to the Laser Sweep Circuit to synchronize the Galvanometer motion.
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shaft rotated, a laser beam re#ecting o! the mirror swept out a sheet of light. The
galvanometer input signal consisted of pairs of closely spaced voltage ramps that caused the
galvanometer shaft to rotate at a constant rotation speed to produce pairs of closely timed,
short duration, laser sheets. Use of the sweep circuit made it possible to reduce the e!ective
time between frames, Dt, to a few milliseconds by producing one sheet at the end of one
video frame and a second sheet shortly thereafter at the beginning of the next frame. One
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limitation of this technique, of course, is that one can only obtain image pairs at a rate of
15 Hz. A modi"cation of the DPIV technique, which we named digital particle image
accelerometry (DPIA), will permit accurate measurement of #uid acceleration even at this
relatively low-data acquisition rate. This is brie#y described later in this paper. A complete
documentation of the technique may be found in Dong et al. [40].

7.1.3. DPI< Processing Program

The high-resolution DPIV software package employed in Shah et al. [34, 35] was also used
for this investigation; a detailed description of this program, its calibration, and accuracy is
provided in Hsu [41]. The essence of the program is identical to that developed by Willert
and Gharib [42]. That is, cross-correlations of user-speci"ed interrogation windows are
computed in Fourier transform space to determine the mean displacement of particles
contained in the windows. The principle feature of the current program is the two-step
correlation process. First, a &coarse' particle displacement "eld is generated using large,
overlapping 128 pixel]128 pixel interrogation windows. The resulting displacement "eld is
very accurate, i.e., free of obviously errant vectors, but also highly spatially averaged.

The coarse displacement "eld is then used as a particle displacement estimator for a &&"ne''
correlation stage. For these experiments, "ne interrogation windows were 64 pixels]64
pixels with 16 pixels between vectors. A key feature of the "ne correlation stage is the o!set
between interrogation windows in each frame comprising a DPIV image pair. The
interrogation window in Frame 2 was o!set relative to its counterpart in Frame 1 by an
amount determined from local interpolation of the coarse displacement "eld. In this
manner, it was possible to accurately compute particle displacements larger than the "ne
interrogation window dimensions. Again the "ne windows are incremented using quarter
window sized steps.

The end result is a processing program capable of generating extremely clean DPIV
vector "elds. A sample velocity vector "eld taken in the wake of a freely oscillating cylinder
appears in Figure 6. In this example, the Reynolds number of the #ow was 3800,
corresponding to the resonant synchronization regime shown in Figure 2. A reference
velocity equal to half the free stream was subtracted from every vector to help visualize the
vortices. Note the absence of any obviously &bad' vectors, and the overall smoothness of
the streamlines. Uncertainty analysis for velocity and their derivative quantities for
measurements of this type are presented in Shah et al. [34] and Hsu et al. [36]. As will be
seen in the following section, the resolution and accuracy of the measurements enabled
accurate assessment of terms 2 and 3 in the energy equation (33).

7.1.4. Experimental Results

As reported in Atsavapranee et al. [37], DPIV measurements were made over a wide range
of Reynolds numbers spanning the resonant synchronization, II, and classic lock-in, III,
regimes. In this paper, our intent was to examine the process of incorporating a single data
set into a reduced-order analytical model. We chose therefore to focus on a single case in
Regime II because of the high degree of synchronization between vortex shedding and
cylinder motion. The speci"c case we chose was #ow at a Reynolds number of 3800, or
a non-dimensional velocity, ;/f

n
D"4)8. This corresponded to the peak in the amplitude

response plot shown in Figure 2 and the time trace shown in Figure 3(b). The data set for
this case consisted of 225 consecutive DPIV velocity "eld measurements taken at 66 ms
intervals, or &1/14 of a cylinder oscillation period, in a horizontal plane perpendicular to
the axis of symmetry of the cylinder at rest. The location of the measurement plane was
&70 cm above the #oor of the test section coinciding with the amplitude measurements.



Figure 6. Sample instantaneous vector plot showing the wake of the cylinder in the resonant synchronization
regime. The streamwise velocity components have been reduced by 7)5 cm, half the free stream speed, to better
visualize the KaH rmaH n vortices in the wake. Flow is left-to-right with the cylinder appearing on the left side of the
plot.
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The spacing between vectors was 0)12 cm corresponding to j/D"0)05. The total duration
of the sample was 15 s, or 16 cylinder oscillation periods. In this section, we present detailed
data for this case.

The "rst step in providing experimental support for the modelling e!ort was to compute
key contributions in equation (28) that are accessible from each of the 225 instantaneous
vector "elds. Figures 7 and 8 each show sample time sequences containing six instantaneous
contour plots of energy transport terms over one oscillation period. Flow in these plots is
from left-to-right; the down-stream half of the cylinder is indicated by a half circle along the
left edge of the plots. Contour values in all plots are dimensional with units of g cm2/s3. For
reference, corresponding velocity vectors were superimposed on the contour plots. Again,
a reference velocity of;

=
/2 has been subtracted to highlight the individual Karman vortices.

Figure 7 contains contours of instantaneous local kinetic energy #ux in the streamwise
direction, values of the integrand o(u2#v2 )u/2 dy, computed at each vector location. Note
that lower-case velocity components, u and v, denote instantaneous local values. The
corresponding #ux of kinetic energy in the cross-stream direction was also calculated but is
not shown.

Figure 8 shows the rate of viscous work done in the cross-stream direction acting on
streamwise, dx elements, (q

xy
u#q

yy
v)dx. Contributions due to viscous forces acting on

cross-stream, dy, elements are not shown. Derivatives were computed from the velocity
vector "elds using central di!erences except along the edges of the vector "elds where
one-sided di!erences were used. Observe that in comparison to the contour levels in Figure 7,
the rate of work done by viscous forces is three orders of magnitude smaller than the kinetic
energy #ux.

We re-emphasize at this point the fact that we compute only those parts of the integral
quantities which can be obtained from two-dimensional vector "elds. Work is currently in



Figure 7. Series of six contour plots showing the #ux of #uid kinetic energy across a vertical control volume
element, one vector spacing in height. Flow is left-to-right with the instantaneous cylinder position indicated. The
time between plots is 2/15 s. The corresponding velocity "eld is shown for reference.
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progress to assess the validity of the quasi-two-dimensional assumption for the inverted
pendulum problem. The "ndings of this study will be presented at a later date. As will be
further discussed, we continue to work on obtaining temporally resolved acceleration



Figure 8. Series of six contour plots showing the rate of viscous work being done on a horizontal control
volume element, one vector spacing in width. Flow is left-to-right with the instantaneous cylinder position
indicated. The time between plots is 2/15 s. The corresponding velocity "eld is shown for reference.
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information necessary for evaluating temporal derivatives of #uid kinetic energy.
Speci"cally, resolution and accuracy issues associated with the DPIA technique described
in Dong et al. [40] are being addressed and will be applied to this problem as well. Finally,
determination of the rate of work due to pressure forces is also problematic at this time. In
principle, this can be resolved using the approach described in Unal et al. [43]. Brie#y
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stated, if spatial and temporal velocity derivatives can be accurately determined in a
quasi-two-dimensional #ow, then one can back out the pressure "eld by integrating the
di!erential Navier}Stokes equations.

Computing integrals for a desired control volume, then, simply required summing values
along a predetermined control volume boundary. The control volume used for this exercise
spanned 40 vectors in the cross-stream direction and 20 vectors in the streamwise direction.
This was 1)85 and 0)92 cylinder diameters in the y and x directions respectively. The control
volume was aligned with the left edge of the vector "elds and centered in the cross-stream
direction about the line of symmetry, y/D"0. Note that, although this choice of control
volume was necessary for the current data set, it is probably less than optimal because the
entire upstream half of the cylinder is not included. For the purposes of demonstrating
the data acquisition and analysis process, this is su$cient. However, it will be seen that the
amplitude response predicted by the reduced-order model is approximately half of the
measured cylinder amplitude. This is quite probably due to the fact that the integrated
values of #uid kinetic energy #ux contain only the downstream half of the structure.
Measurements in which the cylinder is located in the center of the camera "eld of view are
currently in progress to correct this problem.

Time histories of #uid energy transport terms obtained from the complete 225 "eld
data sets are shown in Figure 9. Note that transport quantities have been
non-dimensionalized by 1

2
o;3

=
¸, where ¸ is the length of the upstream (or downstream)

face of the control volume. This non-dimensionalization may be physically interpreted as
Figure 9. Time traces of (a) net #uid kinetic energy #ux across the boundaries of a control volume, and (b) time
rate of change of #uid kinetic energy within a control volume for the resonant synchronization case. Plots are
non-dimensionalized by 1/2o;3

=
¸. The corresponding cylinder position (non-dimensionalized by diameter) vs.

time trace appears as a dotted line in both plots.
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the total kinetic energy #ux of the free-stream #ow into a control volume with upstream
dimension, ¸.

Figure 9(a) is a 15 s trace of net kinetic energy #ux across the boundaries of a control
volume. This appears as a solid line in the "gure. Superimposed on the kinetic energy #ux
trace is a reproduction of the cylinder position, non-dimensionalized by cylinder diameter
vs. time trace shown in Figure 3(b) with a dotted line. The position vs. time signal was
obtained by locating the cylinder position in each of the captured video images. In this way,
we know the exact cylinder position, velocity, and acceleration the moment the #uid
transport terms were acquired.

A useful thing to keep in mind when examining this trace is that, for the resonant
synchronization regime, a strong Karman vortex was being shed at about the same time the
cylinder reached its maximum de#ection. The implication of this to energy transport is
readily apparent in the kinetic energy #ux. There are two features of Figure 9(b) which
warrant some conjecture. The "rst is the apparent correlation between peaks in the energy
#ux with peaks in cylinder motion. For the cylinder oscillation period of &0)94 s, observe
the presence of a peak in the kinetic energy #ux trace every &0)47 s. The coincidence of
peaks in kinetic energy #ux with maximum cylinder de#ections is consistent with the visual
observation of strong vortices being shed near maximum cylinder de#ection. Note that the
correlation appears strongest when the cylinder amplitudes are largest. In the range,
4(t(11 s, where the oscillation amplitudes are reduced, the periodicity of the peaks in
the kinetic energy #ux is less apparent.

The second feature is the existence of longer time variations in Figure 9(a) that seems to
correlate to the period of the beating phenomenon. In particular, if one takes a local
running average of kinetic energy #ux, say over a period of one cylinder oscillation cycle, it
appears that there is a net kinetic energy #ux out of the control volume when the
peak-to-peak oscillation amplitudes are largest. Conversely, this running average becomes
negative between 4 and 11 s when the peak-to-peak amplitude is smallest.

We recall at this juncture that kinetic energy #uxes out of the control volume are
positive (because the area vector and velocity vector both point outward from the
control surface). We then postulate that the long time variation observed in Figure 9(a)
is #uid energy transport to/from the cylinder as a function of the peak-to-peak cylinder
amplitude. When the amplitude is smallest, the cylinder draws energy from the #ow to
amplify the oscillations. During this time, the net kinetic energy #ux is negative. When the
cylinder reaches its maximum peak-to-peak amplitudes, it returns energy back to the #uid.
This is observable as a positive, outward kinetic energy #ux and as a tendency for the
cylinder amplitude to begin decreasing again. One of the prime advantages of the current
modelling approach is that we will be able to directly evaluate this hypothesis; such "ndings
will be the topic of a subsequent paper addressing the dynamics of the #uid}structure
interactions.

Figure 9(b) is a plot of variations in the rate-of-change of #uid kinetic energy within the
control volume. These are estimates of the actual time derivatives computed using simple
one-sided di!erences between successive velocity "elds. Since the time between velocity
"elds was 1/15 s, it is likely that we have not resolved the peak accelerations. Again, the
DPIA technique described in Dong et al. [39] will be employed in the subsequent detailed
investigations of various oscillation regimes. For the purposes of demonstrating the
application of experimental data of this type to an analytical modelling e!ort, the trace in
Figure 9(b) will su$ce.

Finally, we note that the rate of work done by viscous forces, both shear and
elongational, on the control surface is negligibly small in comparison to the #ux and time
derivative terms shown in Figure 9. This is consistent with the contour plots shown in
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Figures 7 and 8. For a reduced-order model, we will probably be able to neglect the
contribution of non-conservative viscous forces for this class of problems.

8. APPLYING EXPERIMENTS TO THE REDUCED-ORDER ANALYTICAL MODEL

In the preceding section, we presented detailed #ow measurements from an inverted
oscillating pendulum experiment. The culmination of the analysis was a set of time traces of
three key #uid kinetic energy transport terms, net kinetic energy #ux, time rate of change of
#uid kinetic energy, and rate of work done by viscous forces. The plots shown in Figure 9
are precisely the #uid &&forcing'' functions needed to analytically determine the motion of the
cylinder. In this section, we show how these data were applied to the governing equation
and compare the theoretical prediction of cylinder motion with the actual, experimentally
measured oscillations.

The precise form of the equation of motion used in this analysis is equation (33). The
equation was simulated using MATLAB in which the #uid forcing terms, appearing on the
right hand side, were the experimentally determined functions presented in Figure 9. Since
the experimental data were necessarily provided in the form of a discrete dataset with
sampling points every 15th of a second, a fast Fourier transform was performed on the data
within MATLAB. For this initial calculation, 100 terms in the Fourier-transformed signals
were retained. Subsequent detailed analysis will be conducted to determine the minimum
number of terms necessary to accurately model the cylinder dynamics.

A comparison between the actual cylinder motion and the motion predicted by our
reduced-order model is shown in Figure 10. Figure 10(a) is again a reproduction of the
cylinder position versus time trace for the resonant synchronization case shown in Figure 3(b).
Figure 10(b) is the corresponding position versus time plot generated by the MATLAB
Figure 10. Comparison of (a) the actual cylinder position vs. time trace with the (b) computed results from the
reduced-order model. Observe that the frequency and beating characteristics all appear to be captured by the
model. Deviations in amplitude response may be due to the choice of experimental control volume. Abscissas of
both plots are in seconds.
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program. Observe that the oscillation frequency appears to be accurately predicted by the
model along with the beating behavior. The predicted amplitude is approximately half of
the measured amplitude. As noted in the preceding section, this is probably due to the fact
that the experimental control volume included only the downstream half of the cylinder. We
also note that there are several waveforms in the modelled response where the peaks appear
as #attened plateaux. These can be seen at t"3, 7, 9, and 11 s. We believe that these are the
results of numerical instabilities in the MATLAB program; there is a singularity in the
governing equation at the extremes of the cylinder motion where the structure velocity is
zero. This is particularly problematic when the experimental data were acquired very close
to the cylinder peak positions. At this juncture, we believe that the numerics are not
su$ciently robust to smoothly integrate across these singularities, thereby resulting in
arti"cially elongated peaks. Again, work is in progress to rectify this problem.

Nonetheless, the potential of the model to accurately predict the response of the cylinder
to vortex-induced vibrations is extremely encouraging in the light of the re"nement work
yet to be done. Speci"c re"nements being implemented include use of the new DPIA
measurement capability. We are developing a trigger circuit which will enable
phase-averaged measurements of the beating phenomena. Finally, we are adjusting the
imaging "eld of view so that the cylinder appears in the center of the image. We are
con"dent that these modi"cations will provide even more accurate, more highly resolved
data sets which will facilitate a detailed understanding of the dynamic coupling of
#uid}structure interactions.

9. A MORE GENERAL VARIATIONAL APPROACH

9.1. CONFIGURATION PRESCRIBED AT t
1

AND t
2

Suppose we prescribe the system at t
1

and t
2
, then a variational formulation becomes

possible. Begin with equation (17), repeated here,
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The next step here would be to work with each term in order to arrive at an equation of
the form
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from which, using the argument that dr is arbitrary everywhere except at the boundaries at
t
1
and t

2
leads to the equations of motion, EOM. There will be as many equations of motion

as there are generalized co-ordinates in the system. The conditions D[2]drD
boundaries

"0 lead
to the possible boundary conditions. dr is a vector with dimension equal to the number of
generalized co-ordinates. Our results using this approach can then be compared with that of
the last section. At this time it is not possible to draw any speci"c conclusions, but we would
like to expand a bit on this development, the details of which will appear in a subsequent
paper.

We know that the Lagrangian of the continuous system, structure and #uid, is obtainable
by standard methods, resulting in one equation of motion in each generalized co-ordinate.
Assume, for a rectangular cross-section in the open control volume, that the ordinate is the
co-ordinate y and the abscissa is the co-ordinate x, then the variation dr will be $dy or
$dx respectively. Performing the variation of the Lagrangian also results in the respective
boundary conditions. Formally, we have
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There then remains the need to expand the variations within the open and closed control
volumes. Consider "rst the open control volume. We will "nd
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For the inner control volume, the cross-section is circular. Therefore, the outward normal dr will be
of the form dr"$cos dx$sin dy. Then,
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Equation (35) then becomes
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Functions S, F, O, and C are those that arise from the surface integration. BCs are the
boundary conditions. Using the familiar arguments that since the variations are arbitrary
and independent, the only way that the integral can be identically zero is if each factor of the
variations equals zero, we have
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"0. (41, 42)

These two equations are the two, non-linear coupled partial di!erential equations that
are the reduced-order model for the #uid}structure interaction. It is important to emphasize
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that we chose two generalized co-ordinates in order to demonstrate the procedure. There
will be as many coupled partial di!erential equations as there are generalized co-ordinates.
For example, if the structural model can bend in two co-ordinates as well as extend, then it
alone will have three generalized co-ordinates. We expect to be able to model more realistic
#uid}structure interaction problems. This work is progressing.

10. DISCUSSION AND CONCLUSIONS

The work of McIver has been extended to model the oscillation of a structure in a #uid
#ow. Two variational approaches have been developed. The "rst approach assumes that the
system con"guration is not prescribed at the end times. This led to a single equation
governing the motion of the structure as it is coupled to the #uid system. This equation has
the units of power, and is therefore a power balance between #uid and structure. The second
approach which is only introduced and will be #eshed out in a subsequent paper follows the
more traditional variational approach of prescribing the system con"guration at the end
times. As outlined, this approach will result in a series of governing equations, one for each
degree of freedom. This approach holds promise for more complicated #ow patterns and
structural behavior.

The above theoretical developments rest heavily in a practical and literal sense
upon experimental input. The derived governing equations are semi-empirical, requiring
experimentally developed functions. However, this is certainly an explicit trademark of all
#uid mechanics, and is implicit in all of science and engineering. We view it as a positive
aspect of the model, that it is inexorably linked to physical data. The second part of this
paper developed the details of the concurrent experimental program.
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